Задачи на проценты про вклады

Занятие4. Сложные проценты

Существует формула для начисления сложного процента:

R- СТАВКА ПРОЦЕНТА;

T- КОЛИЧЕСТВО ПЕРИОДОВ;

S- ПОЛУЧАЕМАЯ СУММА.

Рассмотрим несколько задач, решаемых по этой формуле.

Задача1. Расчитать сумму вклада через 3 года при сложной процентной ставке 10% годовых, если было вложено 1000 рублей.

Задача2. С какой процентной ставкой необходимо вложить деньги в банк, если через 2 года вкладчик хочет получить 120000 рублей при первоначальном взносе 100000 рублей?

Задача3. Через сколько лет сумма вклада по сложной процентной ставке 8% годовых вырастет с 10000 рублей до 20000 рублей?

Задача4. За 5 лет при сложной процентной ставке 7% годовых на счету у вкладчика стало 2000 рублей. Сколько денег он вложил в банк?

Задачи на вклады и скидку

Прежде чем перейти к задачам на вклады и скидки, необходимо разобраться зачем вообще люди кладут деньги в банк и как найти выгодную скидку.

Задачи по вкладам

Естественно, люди кладут деньги в банк (открывают вклад), не по доброте душевной. Вклады открываются с целью получения прибыли. Банк предлагает следующее: вы кладёте в банк определённую сумму на определённый срок.

Например, на год. В течение года вы не сможете воспользоваться своими деньгами (ими будет пользоваться банк), но за это банк вам заплатит, вернув через год не только вложенную вами сумму, но и небольшое вознаграждение.

Какова будет сумма вознаграждения?

Для её нахождения банк устанавливает процент годовых. Если вы умножите сумму вашего вклада на процент годовых, вы найдёте, какое вознаграждение добавит банк к вашему вкладу.

Рассмотрим задачи на эти темы из учебников Петерсона и Виленкина.

Задача из Петерсона

Разберем из учебника задачу Петерсон .

Вкладчик внес в банк 1200 р. В какую сумму вклад превратится через год, если банк начисляет доход в размере 4% годовых?

Найдем какое вознаграждение банк доложит вкладчику. Для этого умножим 1200 р. на процент годовых 4% .

4% = 0,04
1200 · 0, 04 = 48 р. — такое вознаграждение доложит банк вкладчику через год.

Теперь найдем общую сумму, которую заберет вкладчик через год.
1200 + 48 = 1248 р. — в такую сумму превратится вклад через год.

Ответ: 1248 р. — в такую сумму превратится вклад через год.

Задачи на скидку (уценку)

Скидка — это понижение цены товара или услуги. Чаще всего скидку указывают в процентах. Поэтому, чтобы найти на сколько в рублях понизилась цена товара, нужно цену товара умножить на процент скидки.

Задача из ГИА 9 класс

Цена изделия составляет 5000 р. На изделие предложена скидка 10% . Найти цену товара с учетом скидки.

Найдем скидку в рублях.
10% = 0,1
5000 · 0,1 = 500 р. — скидка в рублях.

Теперь найдем цену товара с учетом скидки.
5000 − 500 = 4500 р. — цена товара с учетом скидки.

Ответ: 4500 р. — цена товара с учетом скидки.

Сложные проценты на примерах

Задачи на сложные проценты решаются в достаточно быстрый способ при знании нескольких простых формул. Часть из них касается начислений по вкладу или кредиту, когда те осуществляются через определенные промежутки временни . Также сложные проценты используют в задачах химии, медицины и ряде других.

ФОРМУЛЫ СЛОЖНЫХ ПРОЦЕНТОВ

В случае размещения вкладов с капитализацией процентов на годы конечная сумма депозита определяется формулой
Здесь P – первоначальный взнос, r – процентная ставка, n – количество лет. По сложным процентам работают банки, инвестиционные фонды, страховые компании. Распространенные за рубежом, а теперь и в Украине — пенсионные фонды и фонды страхования жизни работают по схеме сложных процентов.
При размещении вкладов с капитализацией процентов ежеквартально формула сложных процентов будет выглядеть
где q – количество полных кварталов.
При капитализации процентов ежемесячно применяют следующую формулу для вычислений
где s – количество месяцев существования соглашения.
Последний случай, непрерывное начисление процентов, когда сложные проценты начисляются ежедневно, рассчитывают по формуле
где m – количество дней.
Страхование жизни и откладывания пенсий исчисляют сложными формулами, кроме начисления сложных процентов ежегодно осуществляются необходимые взносы.
Рассмотрим два случая накопления. Мужчина откладывает 5000 грн. в течение 20 лет. За это время он отложит
20*5000= 100000 (грн).
При откладывании в накопительные фонды с годовой ставкой 13%, за первый год сумма возрастет до
5000*(1+13/100)=5650 (грн) .
В следующем году человек в данной суммы добавляет еще 5000 грн. В результате, за второй год сумма увеличится
(5650+5000)*(1+0,13)=12034.50 (грн) .
Продолжая подобные вычисления, в конце срока получим сумму размером 457349,58 грн.
Поверьте — ошибок при исчислении форуме, большое значение набегает за счет сложных процентов. Сомнительным остается только история изменения платежеспособности гривны через 20 лет. Учитывая политику государства вкладывать деньги в такие фонды люди не спешат, однако за рубежом практика откладывания денег распространена, правда процентные ставки намного ниже.

Рассмотрим распространенные задачи на сложные проценты.

Пример 1. Вкладчик положил на депозит $ 3000 под 9% годовых на 10 лет. Какая сумма аккумулируется конце 10-го года при годовой капитализации? На сколько вырастет сумма по сравнению с первоначальным взносом?

Решение: Применяем формулу сложных процентов для нахождения суммы в конце срока

Чтобы ответить на второй вопрос, от значения 7102,09 вычитаем сумму вклада.

Разница составляет 4102 доллара.

Пример 2. Инвестор вложил 7000 грн под 10% годовых при условии начисления сложных процентов ежеквартально. Какую сумму он получит через 8 лет?

Решение: Применяем 2 формулу сложных процентов. Находим количество кварталов
8*4=32.
и подставляем в формулу

Школьные задачи на сложные проценты

Например, возьмем задачи из учебника для 9 класса авторов А.Г. Мерзляк, В.Б. Полонский, М.С. Якир «Аглгебра». (Номер в скобках)

Задача 1. (556) Костюм стоил 600 грн. После того как цена была снижена дважды, он стал стоить 432 грн., Причем процент снижения второй был в 2 раза больше, чем в первый раз. На сколько процентов каждый раз снижалась цена?

Решение: Для упрощения вычислений обозначим
X – первая скидка;
X/2 – вторая скидка.
Для вычисления неизвестной X составляем уравнение

Упрощаем, и сводим к квадратному уравнению

и решаем


Первый решение не имеет физического смысла, второй учитываем при вычислениях. Значение 0,2 соответствует снижению на 0,2*100%=20% после первой скидки, и X/2 =10% после второй скидки.

Задача 2. (557) Определенный товар стоил 200 грн. Сначала его цену повысили на несколько процентов, а затем снизили на столько же процентов, после чего стоимость его стала 192 грн. На сколько процентов каждый раз происходила смена цены товара?

Решение: Поскольку проценты одинаковы, то обозначаем изменении цены товара через X .
На основе условия задачи получим уравнение

Его упрощение приведет к решению уравнения

откуда корни приобретут значений

Первая значение отвергаем, оно меняет суть задачи (сначала имеем снижение, а затем рост процентов, противоречит условию). Второе при пересчете составит 0,2*100%=20% процентов.

Задача 3. (558) Вкладчик положил в банк 4000 грн. За первый год ему начислена определенный процент годовых, а второго года банковский процент увеличен на 4%. На конец второго года на счете стало 4664 грн. Сколько процентов составила банковская ставка в первый год?

Решение: Обозначим через X – увеличение вклада в первый год, тогда
X+4/100%=X+0,04
начисления во второй год.
По условию задачи составляем уравнение для определения неизвестной X

После упрощений получим квадратное уравнение вида

Вычисляем дискриминант

и корни уравнения

Первый корень отбрасываем, второй соответствует ставке в 6% годовых.

Задача 4. (564) В сосуде 12 кг кислоты. Часть кислоты отлили и долили до прежнего уровня водой. Затем снова отлили столько же, как и в первый раз, и долили водой до прежнего уровня. Сколько литров жидкости отливали каждый раз, если в результате получили 25-процентный раствор кислоты?

Решение: Обозначим через X – часть кислоты, которую отливали.
После первого раза ее осталось 12-X, а процентное содержание кислоты

После второй попытки содержание кислоты в сосуде составило
.
Разведя водой до 12 кг, процентное содержание составляло 25%. Составляем уравнение

Упрощаем проценты и избавляемся знаменателей


Решаем квадратное уравнение


Условии задачи удовлетворяет второе решение, а это значит, что каждый раз отливали 6 кг жидкости.

На этом знакомство со сложными процентами завершается. На практике Вам встретятся как простые так и сложные задачи. При проблемах с вычисления сложных процентов обращайтесь к нам, мы поможем Вам в решении задач.

Простые проценты. Решение задач

Задачи на простые проценты встречаются в школьном курсе алгебры, экономике, банковской сфере и т.д. Без понимания их содержания и знания формул решить задачи часто бывает сложно. Ниже на распространенных примерах будут даны основные задачи и формулы для их решения.
Процентом ( процентом ) от числа А называется одна сотая часть этого числа. Слово «процент» произошло от латинского pro centо , что значит «с сотни ». Обозначение процентов « % » происходит от искажения письменного сto .
Например: 10% = 0,1; 10 часть числа А .
В случае кредитов и депозитов используют формулы для вычисления простых процентов на период в годах, месяцах и днях. Задачи не требуют сложных вычислений и понравятся как школьникам, так и тем, кто первый раз знакомится с процентами. На практике проценты используют в банковской сфере, химии, медицине, хозяйстве.

Другая часть задач касается нахождения содержания чего-то по известным процентами, или наоборот — за содержанием найти процентное соотношение.

Оба типа задач будут рассмотрены ниже.

Простой процент на период в годах

Формула простого процента на период в годах
P[i]=P*(1+n/100*r) где P[i] – увеличение величины P через r лет, если ставка составляет n процентов. Величиной P могут выступать депозиты, кредиты, материалы.

Задача 1. Вкладчик разместил сумму размером 2400 рублей в банк. Определите, какую сумму получит вкладчик через 3 года, если процентная ставка составляет 19 % в год.

Решение: Данные задачи подставляем в формулу простых процентов
P[3]=2400*(1+19/100*3)=3768 (рублей.)
Таким образом за 3 года вкладчик получит 3768 рублей.

Обратная задача на проценты

Обратной задачей на проценты называют такую, в которой за неизвестные выступают количество лет или процентная ставка.

Задача 2. Вкладчик взял в кредит 3000 рублей и должен вернуть через пять лет. Найти процентную ставку кредита, если известно, что нужно отдать банку 8100 грн.

Решение: Выведем формулу для этой задачи.
P[i]=P*(1+n/100*r);
P[i]/P=1+n/100*r;
n= (P[i]/P-1)/r*100. Выполняем вычисления по выведенной формуле
n= (8100/3000-1)/5*100=1,7/5*100=34 (%).
Следовательно, процентная ставка кредита составляет 34 %.
Если в обратной задачи на проценты нужно найти количество лет, то нужная формула на основе предыдущих выкладок будет выглядеть
r= (P[i]/P-1)/n*100

Расчет простых процентов за период в несколько месяцев

Формула простых процентов в этом случае будет иметь вид
P[i]=P*(1+n/100*m/12) здесь обозначено m – количество месяцев ( month ).

Задача 3. Вкладчик разместил сумму размером 1600 рублей в банк на один год, однако ему пришлось забрать деньги через семь месяцев. Процентная ставка при досрочном снятии депозита составляет 9 % в год. Найти сумму, которую получит вкладчик.

Решение: Применяем формулу для вычислений

P[3]=1600*(1+9/100*7/12)=1684 (рублей.)
За 7 месяцев вкладчик получит 1684 рублей.
Из приведенной формулы достаточно просто получить все необходимые величины для обратной задачи.
Количество месяцев определяют по формуле
m= (P[i]/P-1)/n*100*12

а процентную ставку находят из зависимости
n= (P[i]/P-1)/m*100*12

Расчет простых процентов за период в днях

Данный тип задач применяют при имитации кратковременных кредитов или депозитов. Формула начислений имеет вид
P[i]=P*(1+n/100*d/365)

здесь d – количество дней.

Задача 4. Заемщик получил кредит на сумму 20000 рублей под 32% годовых. Через 240 дней кредит был полностью погашен. Рассчитайте, какую сумму заемщик отдал банку? Насколько отличается эта сумма от одолженной?

Решение: Применяем формулу простых процентов для вычислений
P[i]=20000*(1+32/100*240/365)=24208,22 (рублей)
24208,22-20000=4208,22 (рублей)
Получили, что за этот период насчитана сума 4208,22 рублей .

Простые проценты в математике

Задача 5. В класс закупили 3 энергосберегающие окна, которые на 20 % дороже обычных. Сколько потратили денег, если за обычные окна нужно заплатить 1400 гривен.

Решение: Найдем цену энергосберегающего окна
P[в]=1400*(1+20/100)=1680 (грн.)
За три окна заплатили
1680*3=5040 (грн) .

Задача 6. В бочке объемом 200 литров перевозили масло . На станции отлили 60 литров. Сколько процентов от обьема осталось?

Решение: Задача состоит в нахождении количества в процентах масла от общего объема бочки.
200-60=140 (л);
140/200*100%=70 %
Осталось 70% объема бочки.

Задача 7. При несвоевременной уплате долгов насчитывают 2% пени за каждый просроченный день. Какую сумму нужно заплатить через 12 дней после срока погашения 500 рублей долга?

Решение: По формуле простых процентов находим
P[i]=500*(1+2/100*12)=620 (рублей)
Нужно заплатить 620 рублей.

Рассмотрим задачи из учебника для 9 класса авторов А.Г. Мерзляк, В.Б. Полонский, М.С. Якир « Аглгебра ». (Номер в скобках)

Задача 8. (542) К сплаву массой 600 г, содержащему 12 % серебра, добавили 60 г серебра. Какое содержание серебра в новом сплаве?

Решение: Определяем сколько грамм серебра в первом сплаве
P[i]=600*12/100=72 (г)
К найденному значению добавляем 60 грамм серебра
P1=72+60=132 (г)
При определении процентного содержания серебра не следует забывать, что вес нового сплава вырос на массу серебра, которую добавили.
Если би Вы вычисляли следующим образом
132/600*100%=22%
то получили — неправильный результат .
ЗАПОМНИТЕ: в подобных задачах сначала находят меру ( вес, объем, длину) нового объекта, а затем находят содержание.
В заданной задачи новый сплав получит массу
P2=600+60=660 (г)
а процентное содержание серебра
P1/P2*100%=132/660*100%=20 %
будет следующим — 20% .

Задача 9. (543) В саду росли яблони и вишни, причем яблони составляли 42% всех деревьев. Вишен было на 48 деревьев больше, чем яблонь. Сколько деревьев росло в саду?

Решение: К правильному ответу можно идти несколькими способами. Рассмотрим следующий из них.
Пусть яблони составляют 42% всех деревьев, тогда вишни
100-42=58%.
Вишен на 48 больше нежели яблонь.
Разница между ними в процентах составляет
58-42=16%
а в количестве — 48 деревьев.
Задача состоит в нахождении количества деревьев, поэтому складываем отношения
16% – 48 деревьев
100 % –Х деревьев
Отсюда находим количество деревьев в саду
Х=100*48/16=300 (деревьев).

Задача 10. (544) За два дня был проложен кабель. За первый день проложили 56% кабеля, а за другой — на 132 м меньше, чем первого. Сколько всего метров кабеля было проложено за два дня?

Решение: Задача похожа на предыдущую. За второй день проложили
100-56=44%
кабеля, разница между первым и вторым днем составляет
56-44=12%
и составляет 132 метра.
На основе этого составляем отношение
12% – 132 м
100 % –Х м
Отсюда находим искомую длину
Х=100*132/12=1100 (м.)
За два дня проложили 1100 м.. кабеля.

Задача 11. (545) За первый день мальчик прочитал 25% всей книги, за второй — 72% от количества страниц что осталась, а за третий — остальные 84 страницы. Сколько страниц в книге?

Решение: 72 % процента от остатка книги составляет
72*(100-25)/100= 54% .
На третий день оставалось прочитать
100-25-54=21%
или 84 страницы.
Составляем соотношение
21% – 84 ст
100 % –Х ст
с которого находим
Х=100*84/21=400 (ст),
что книга содержит 400 страниц.

Сложные задачи на простые проценты

В данную категорию входят задачи , которые вызывают немало трудностей у школьников. Однако , если достаточно хорошо разобраться в их решении, то все сложности отходят на второй план.

Задача 12. (547) Морская вода содержит 5% соли. Сколько пресной воды нужно добавить к 40 кг морской воды, чтобы концентрация соли составляла 2% ?

Решение: Находим вес соли в 40 кг морской воды
40*5/100=2 (кг).
Находим вес воды, которая содержала 2% соли (2 кг)
2% – 2 кг
100 % –Х кг
или
Х=100*2/2=100 кг.
Сейчас у нас есть 40 кг воды, поэтому нужно добавить
100-40=60 кг
пресной воды.

Задача 13. (554) Перемешали 30- процентный раствор соляной кислоты с 10- процентным раствором и получили 800 г 15 — процентного раствора. Сколько граммов каждого раствора взяли для этого?

Решение: В таких задачах требуется составить два уравнения, решение которых и приведет к отысканию нужных величин.
Обозначим A – вес первого раствора, B – соответственно второго.
Тогда из условия задачи составляем два уравнения:
первый касается процентных соотношений ( * 100 )
30*A+10*B=800*15
второе — веса смеси
A+B=800.
С второго выражаем одну из неизвестных и подставляем в первое уравнение
A=800-B;
30*(800-B)+10*B=800*15
и решаем его
24000-30*B+10*B=12000;
20*B=24000-12000=12000;
B=12000/20=600 (г).
Массу первого раствора находим из зависимости
A=800-B=800-600=200 (г).
Следовательно, нужно 600 г 30% раствора и 200 г 10% раствора соляной кислоты.

Задача 14. (560) К сплаву меди и цинка, содержащему меди на 12 кг больше, чем цинка, добавили 6 кг меди. Вследствие этого содержание цинка в сплаве снизилось на 5%. Сколько цинка и сколько меди содержал сплав в самом начале?

Решение: Обозначим вес меди через X, тогда вес цинка – X-12 .
Процентное содержание цинка при этом составляет
(X-12)/(X+X-12)*100%=(X-12)/(2*X -12)*100%.
К сплаву добавили 6 кг меди. Вес меди теперь составляет X+6 ,
а сплава
X+6+X-12=2*X-6 .
Процентное содержание цинка в новом сплаве
(X-12)/(2*X-6)*100% .
Разница между предыдущим сплавом и новым составляет 5%. Это запишем в виде уравнения

Делим данную запись на 100%

и сводим к квадратному уравнению (избавляемся знаменателей)

Упрощаем левую часть уравнения

и правую

После переноса слагаемых в правую сторону, получим квадратное уравнение

Вычисляем дискриминант

и корни уравнения

Итак имеем не единое, а пару решений. При 21 кг меди получим цинка
X-12=21-12=9 (кг) ,
а при 18 кг меди
X-12=18-12=6 (кг).
Итак возможны два сплавы — 9 кг цинка и 21 меди, 18 кг цинка и 6 меди. Можете убедиться, что при подстановке в процентное уравнения первый сплав будет содержать 30% цинка, а второй — 25% цинка.

Подобных задач Вы встретите в литературе немало. Задачи на проценты требуют от Вас только хорошо разобраться, что известно? и что нужно найти? Все остальное сводится к простым математическим действиям.

В помощь студентам и аспирантам

Задача 1. Под какой процент была вложена 4000 рублей, если через 8 лет сумма наращенного капитала составила 7000 рублей.

I = S – p = 7000 – 4000 = 3000 руб .

i = 100*I/(P*n) = 100*3000/(4000*8) = 9,4%

Сумма была положена под i = 9,4%

Задача 2. Определить сумму наращенного капитала на 1 ноября, если клиент положил на депозитный счет 3 мая 15000 рублей под 15% годовых, а 2 августа ставка увеличилась на 4%. Расчеты ведутся по французской методике расчета процентов.

d 1 = с 3 мая по 2 августа = 91 день

d 2 = со 2 августа по 1 ноября = 91 день

k = 360 дней (французская методика)

I 1 = P 1* i 1* d 1/( k *100) = 15000*15*91/(100*360) = 568,75 руб.

S1= P1+I1 = 15000 + 568,75 = 15568,75 руб .

I2 = P2* i2*d2/(k*100) = 15568,75*19*91/(100*360) = 747,735 руб .

S 2 = P 2+ I 2 = 15568,75 + 747,735 = 16316,485 руб.

Сумма наращенного капитала на 1 ноября составляет 16316,485 руб.

Задачи на расчет простых и сложных %

Задача 3

1. На какой срок необходимо вложить 5000 рублей при 30% годовых, чтобы сумма дохода составила 560 рублей?

560 = (5000*30* d )/100*365;

150000* d = 20440000

Ответ: 5000 руб. надо положить на 136 дней, чтобы получить доход в 560 руб. при 30% годовых

Задача 4.

Клиент положил в банк депозит в размере 25 000 руб. 15 апреля. 19 июня клиент снял со счета 8 000 руб. Определить ставку банка по вкладу, если суммарный доход на 1 января по депозиту клиента составил 1000 руб. Расчеты ведутся по английской методике расчета процентов.

Р = 25000- 8000=17000 руб.

1000 = (17000* i *261)/100*365;

4437000* i = 36500000

Ответ: ставка банка по вкладу равна 8,2%

Задача 5 . На какой срок необходимо вложить 15 000 рублей при 9 % годовых, чтобы сумма дохода составила 2 000 рублей?

Для решения задачи воспользуемся формулой

i — процентная ставка;

n – срок в годах.

Из формулы получаем, что n = I *100% / P * i

n = 2 000 * 100 % / 15 000 * 9 % = 1,481 лет

Ответ: нужно вложить на 1, 481 лет.

Задача 6 . Клиент положил в банк депозит в размере 45 000 руб. 15 мая. 30 июля клиент снял со счета 7 000 руб. Определить ставку банка по вкладу, если суммарный доход на 1 января по депозиту клиента составил 6 000 руб. Расчеты ведутся по английской методике расчета процентов.

Для решения задачи воспользуемся формулой

i — процентная ставка;

d – срок в днях, на который положили деньги;

K — база измерения времени или продолжительность года в днях.

Английская практика (в России) – 365 дней.

Из формулы получаем, что i = I * 100% * K / P * d

P = 45 000 – 7 000 = 38 000 рублей

d = (31-15) +30+31+31+30+31+30+31+1 = 231

i = 6 000 * 100 % * 365 / 38 000 * 231 = 24,95 %

Ответ: ставка банка по вкладу 24,95 %.

Задача 7

Под какой процент была вложена 1000 рублей, если через 7 лет сумма наращенного капитала составила 5600 рублей.

1) Процентный платеж или доход кредитора:

I = S — P = 5600 – 1000=4600 руб.

S – сумма наращенного капитала

P — первоначальный капитал

2) Процентную ставку:

i =100* I /( P * n )=100*4600/(1000*7)=66%

n — время, выраженное в годах

Ответ: процентная ставка равна 66% годовых.

Задача 8

Определить сумму наращенного капитала на 12 октября, если клиент положил на депозитный счет 3 апреля 20 000 рублей под 15% годовых, а 12 августа ставка увеличилась на 2%. Расчеты ведутся по немецкой методике расчета процентов.

Согласно немецкой методике год условно принимается за 360 дней, а месяц – 30 дней.

1) Количество дней, в течении которых вклад лежал под 15 % годовых:

Август – 11 дней

d = 128 дней – время пользованию ссудой

2) Количество дней, в течении вклад лежал под 17 % годовых:

Август – 19 дней

Сентябрь – 30 дней

Октябрь – 12 дней

d = 61 день – время пользованию ссудой

3) Доход, получаемый кредитором от заемщика за пользование денежной ссудой:

I = P * i * d /( k *100) = [20000*15+128/(100*360)] +[20000*17+61/(100*360)] = 1642 , 78 руб.

Р – первоначальный капитал

i – процентная ставка

d – количество дней

4) Сумма наращенного капитала:

S = P + I = 20000 + 1642,78 = 21642,78 руб.

Ответ: наращенный капитал равен 21642,78 руб.

Задача 9

Среднемесячная заработная плата за вычетом налогов на предприятии составила: в базисном периоде 1 1548 руб., в отчётном- 14005 руб., цены на потребительские товары и услуги повысились в отчётном периоде па 17,5%. Доля налогов в заработной плате в базисном периоде составляла 13%, в отчётном — 15%. Определите: 1 .Индекс покупательной способности денег.

2.Индекс номинальной и реальной заработной платы.

Задача 10

Имеются следующие данные о составе и использовании денежных доходов населения РФ в текущих ценах, млрд руб.:*

* Россия в цифрах. 2008: Стат. сб. — М.: Росстат, 2008. С. 120.

Показатель 2006 г. 2007 г .

-доходы от предпринимательской деятельности 1915,1 2118,3

-оплата труда 11237,0 14940,0

-социальные выплаты 2080,4 2317,8

-доходы от собственности 1720,6 1423,1

-другие доходы 336,8 424,3

Денежные расходы и сбережения:

-покупка товаров и оплата услуг 11927,5 14792,4

-обязательные платежи и разнообразные взносы 1813,0 2661,0

-приобретение недвижимости 572,3 690,5

-прирост финансовых активов

Определить за каждый год:

1. Номинальные и располагаемые денежные доходы населения в текущих ценах.

2. Прирост финансовых активов.

3. Структуру денежных доходов и расходов населения.

4. Изменение структуры денежных доходов населения с помощью обобщающих показателей

Задача 11

Больший капитал вложен на 6 месяцев при ставке 5%, а меньший на 3 месяца при ставке 6%. Разница между двумя капиталами 1000 рублей. Найти величину капиталов, если известно, что процентный платеж по первому капиталу равен двойному процентному платежу за второй капитал.

Задача на простые проценты.

Задача 12

Сравнить доход по различным вкладам:

1 – 5000 рублей с 1 мая по 10 ноября по 15 % годовых (английская практика расчета процентов)

2 – 4000 рублей с 5 апреля по 28 августа под 20% годовых (немецкая практика расчета процентов).

Задача на простые проценты.

По английской практике расчета процентов в году 365 дней и в месяце число дней соответствует календарю. Значит, доход по первому вкладу нужно рассчитывать на следующее количество дней: 30+30+31+31+30+31+10=193;

I 1=( P 1* i 1* d 1) / ( K 1*100)=5000*15*193/(365*100)=396,58 руб.

По немецкой практике расчета процентов в году 360 дней и 30 дней в каждом месяце. Значит, доход по первому вкладу нужно рассчитывать на следующее количество дней: 25+30+30+30+28=143

I 2=( P 2* i 2* d 2) / ( K 2 *100)=4000*20*143/(360*100)=317,78 руб.

Следовательно, доход по первому вкладу больше, чем по второму на 78,8 рублей.

Задача 13

Капитал величиной 15 000 рублей вложен в банк на 3 месяца под 6% годовых. Найти сумму наращенного капитала.

Решение задачи на простые проценты:

Будем решать данную задачу с использованием методики простых процентов.

Определим доход от вклада 15 000руб, положенных в банк на 3 месяца:

I = P * i * m / (12*100) = 15000*6*3/ (12*100)=225 руб.

Сумма наращенного капитала

Задача 14

Клиент положил в банк депозит в размере 20 000 руб. 15 мая. 10 августа клиент снял со счета 15 000 руб. Определить ставку банка по вкладу, если суммарный доход на 1 февраля по депозиту клиента составил 11 000 руб. Расчеты ведутся по немецкой методике расчета процентов.

При определении числа дней ссуды по немецкой методике расчета процентов год условно принимается за 360 дней, а месяц – 30 дней. Учитывая это, посчитаем сколько дней составит время депозита в размере 20 000 рублей:

август – 10 дней.

Определим доход от депозитного вклада суммы 20 000 рублей на срок 85 дней:

I=(P*i*d) / (K*100)=20000*85*i/(360*100)=47,22 i.

После того, как клиент 10 августа снял со счета 15 000 рублей, сумма депозита составила 5 000 рублей. Посчитаем сколько дней составит время депозита в размере 5 000 рублей

август – 20 дней;

сентябрь – 30 дней;

октябрь – 30 дней;

ноябрь – 30 дней

декабрь – 30 дней

Тогда, I2=(P2*i*d2) / (K*100)=5000*170*i/(365*100)=23,288 i.

Определим суммарный доход от депозитного вклада:

I=I1+I2=47,22 i.+23,288 I = 70,51* i = 11000;

При заданных условиях ставка банка по вкладу составила 156%.

Задача 15

Под какой процент была вложена 5000 рублей, если через пять лет сумма наращенного капитала составила 3600 рублей.

По условию, была вложена сумма P =5000 рублей.

Сумма наращенного капитала I =3600 рублей.

i =3600/(5000*5)=0,144, т.е. 14,4%

Ответ: процент составляет 14,4% .

Задача 16

Определить сумму наращенного капитала на 1 октября, если клиент положил на депозитный счёт 3 апреля 20000 рублей под 15 % годовых, а 2 августа ставка увеличилась на 2 процента. Расчеты ведутся по немецкой методике расчета процентов.

По условию, была вложена сумма P =20000 рублей.

Размер процента составлял 15% с 3-го апреля по 2 августа и 15+2=17% -со второго августа до 1 октября.

Разобьём это время на два периода:

d 1=27+30+30+30+2=119-первый период по немецкой системе

d 2=28+30+1=59-второй период по немецкой системе

I = I 1+ I 2-наращеный капитал за два периода.

k – база дней по немецкой системе.

I=P*i*d/K=I1+I2= 20000*0,15*119/360+ 20000*0,17*59/360= 1548,99 рублей.

I 1=991,67 рублей

I 2=557,22 рублей

I =1548,99 рублей

Ответ: сумма наращенного капитала I =1548,99 рублей.

Задача 17

Капитал величиной 40000 рублей вложен в банк на 3 месяца под 6% годовых. Найти сумму наращенного капитала.

Задача 18

Клиент положил в банк депозит в размере 50000 руб. 15 мая. 10 августа клиент снял со счета 25000 руб. Определить ставку банка по вкладу, если суммарный доход на 1 февраля по депозиту клиента составил 5000 руб. Ресчеты ведутся по немецкой методике расчета процентов.
I = I 1+ I 2; Составим уравнение, решив которое получим: i = 31.5121%

Ответ: i = 31.5121%

Задача 19

Под какой процент была вложена 1000 рублей, если через 7 лет сумма наращенного капитала составила 5600 рублей.

I = S — P = 5600 – 1000=4600 руб.

S — наращенный капитал

P — первоначальный капитал

Теперь определим процентную ставку:

Ответ: процентная ставка равна 15,71% годовых.

Задача 20

Определить сумму наращенного капитала на 12 октября, если клиент положил на депозитный счет 3 апреля 20 000 рублей под 15% годовых, а 12 августа ставка увеличилась на 2%. Расчеты ведутся по немецкой методике расчета процентов.

Немецкая методика: год условно принимается за 360 дней, а месяц – 30 дней. При определении числа дней ссуды по календарю в России первый и последний дни не учитываются.

Сосчитаем количество дней, при которых вклад лежал под 15 % годовых:

Август – 11 день

Сумма – 128 дней

И количество дней, при которых вклад лежал под 17 % годовых:

Август – 19 дней

Сентябрь – 30 дней

Октябрь – 11 день

I = P * i * d /(100*360)=[20000*15*128/36000 ]+ [20000*17*60/36000 ] = 1633,33.

I = 1633,33 рубля, где

Р – сумма вклада

i – процентная ставка

d – количество дней

S = P + I = 20000 + 1633,33 = 2163,33 рубля.

Ответ: наращенный капитал равен 2163,33 рубля.

Смотрите еще:

  • Экспертиза залива квартиры в москве Оценка ущерба от залива квартиры в Москве включая мебель, технику включая мебель, технику включая мебель, технику В стоимость включено: 1) выезд эксперта к месту осмотра в пределах МКАД […]
  • Сохранение на корсары гпк rev3 Сохранение на корсары гпк rev3 Обязательные требования по добавлению сохранения: 1. Версия игры 2. Имя персонажа 3. Ранг 4. Корабли 5. Предметы(Деньги,амуниция) 6. Пройденные квесты […]
  • Образец отзыва на исковое заявление по договору поставки Отзыв на исковое заявление В АРБИТРАЖНЫЙ СУД г. МОСКВЫ (107802, г. Москва, ул. Новая Басманная, 10) ИСТЕЦ: ООО «_________» ОТВЕТЧИК: ОАО «______________» (Адрес: ____; ( ____) Арбитражное […]
  • Вакансии юрист таможня Юрист у Києві за 30 днів За 30 днів За 14 днів За 7 днів За 1 день Повна зайнятість. Досвід роботи від 2 років. Вища освіта. Вимоги: •Вища юридична освіта •Наявність свідоцтва […]
  • Издательство вакансии юрист Издательство вакансии юрист За вашим запитом «юрист в издательство» у Києві вакансій поки немає. Вакансії, пов’язані із запитом «юрист в издательство» у Києві Молодший юрист , 10000 […]
  • Дома на продажу в алтайском крае под материнский капитал Купить дом Алтайский край Всего 10 454 объявления Всего 10 454 объявления Продаю коттедж, 471 м², 13 соток. 9 ноября 1270 Агентство Пожаловаться Заметка Продам коттедж, […]
Закладка Постоянная ссылка.

Комментарии запрещены.